Cardinal interpolation and spline functions
نویسندگان
چکیده
منابع مشابه
Cardinal Hermite Spline Interpolation with Shifted Nodes
Generalized cardinal Hermite spline interpolation is considered. A special case of this problem is the classical cardinal Hermite spline interpolation with shifted nodes. By means of a corresponding symbol new representations of the cardinal Hermite fundamental splines can be given. Furthermore, a new efficient algorithm for the computation of the cardinal Hermite spline interpolant is obtained...
متن کاملINTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS
In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.
متن کاملCardinal interpolation and spline functions VIII. The Budan–Fourier Theorem for splines and applications
The present paper is the reference [8] in the monograph [15], which was planned but not yet written when [15] appeared. The paper is divided into four parts called A, B, C, and D. We aim here at three or four different results. The unifying link between them is that they all involve the sign structure of what one might call a “Green’s spline”, i.e., a function which consists of two null–splines...
متن کاملA new approach to semi-cardinal spline interpolation
The problem of semi-cardinal spline interpolation was solved by Schoenberg exploiting the piecewise polynomial form of the splines. In the present paper, we propose a new construction for the Lagrange functions of semi-cardinal spline interpolation , based on a radial basis and Fourier transform approach. This approach suggests a way of extending semi-cardinal interpolation to polyharmonic spli...
متن کاملSpline Coalescence Hidden Variable Fractal Interpolation Functions
This paper generalizes the classical spline using a new construction of spline coalescence hidden variable fractal interpolation function (CHFIF). The derivative of a spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of a nondiagonal iterated function system. Our construction generalizes the construction of Barnsley and Harrington (198...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1969
ISSN: 0021-9045
DOI: 10.1016/0021-9045(69)90040-9